MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω       ψ      [  /   ]    .    .


   = [          ] ,     [ ψ      [  /   ]    . ]    .




 /  = [          ] ,     [ ψ      [  /   ]    . ]    .



ψ [ ψ      [  /   ]    . ]    .



ψ     [   ]    .






Em teorias de campos na redecampos de férmions experimentam (pelo menos) uma duplicação no número de tipos de partículas, correspondendo a pólos extras no propagador.

Uma rede é um arranjo periódico de vértices. Se nós aplicarmos uma transformada de Fourier a uma rede, o espaço de momentos é um toro com a forma do domínio fundamental da rede recíproca chamado de zona de Brillouin.

Isto significa que se observarmos as soluções de ondas sobre uma rede, o autovalor do operador de férmions em função do momento (vetor de onda) será periódico.

Para um campo bosônico livre, a ação é quadrática e, por isso, os autovalores tem a forma

,
ψ     [   ]    .

ou a forma similar onde . Para escalas de momento muito maiores que o espaçamento inverso de rede (i.e. para autovalores próximos de zero) somente os momentos em torno de k=0 são dominantes e nós temos uma única espécie de bóson.

Férmions, por outro lado, são descritos por equações de primeira ordem. Então, poderíamos ter algo que será como

 
ψ     [   ]    .

pelo menos com uma dimensão espacial, sendo os casos dimensionalmente mais altos são análogos. Se nós observarmos o limite inferior dos autovalores, nós veremos duas regiões diferentes; uma sobre k=0 e a outra sobre k=π/L. Eles comportam-se como dois tipos de partículas. Isto é chamado duplicação de férmion e cada espécie de férmion é chamada um gosto (em analogia ao sabor dos quarks).

Comments